PULMONARY ARTERY CATHETERIZATION

Introduction

- Pulmonary artery catheters (PAC) provide measured and derived pressure and flow variables of the systemic and pulmonary circulations. Some parameters include
 - Cardiac output / index (with modification, continuously updated cardiac output measurements possible)
 - Cardiac contractility stroke volume, left ventricular stroke work
 - Preload pulmonary artery occlusion pressure (PAOP)
 - Afterload systemic vascular resistance
 - Pulmonary indices pulmonary artery pressure, pulmonary vascular resistance
 - $\circ~$ Allow calculation of total O2 delivery (DO₂), whole body O₂ consumption (VO₂)– although rarely done
 - Right ventricular preload, ejection fraction
 - Mixed venous oxygen saturation (SVO₂)

Indications

- Diagnostic assessment of shock states (cardiogenic, distributive, hypovolemic) and assessment of response to treatment
 - Using cardiac output, stroke volume, systemic vascular resistance
- LV preload and LV performance, pulmonary vasomotor tone, intravascular volume status, especially in the context of acute lung injury
 - -Using PAOP
- Right heart pressures
 - Using right atrial pressure, pulmonary artery pressure
- Intracardiac shunt

Limitations

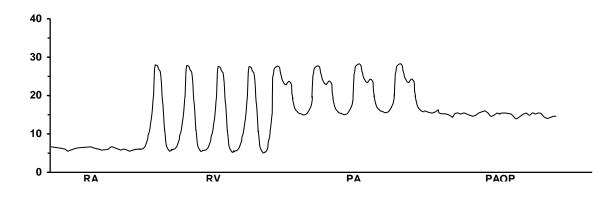
PAOP approximate LVEDP based on the assumptions that

- 1. there is a continuous column from right-side heart to left-side heart
- 2. normal mitral valve
- 3. normal LV compliance

Problems of misrepresentation when

• Catheter tip outside West's zone 3 (ie P_{Alveolar} > P_{venous})

Department of Anaesthesia and Intensive Care, the Chinese University of Hong Kong Last Update Nov 2015


- Mitral valve dysfunction eg mitral stenosis, mitral regurgitation, atrial myxoma (PAOP> LVEDP)
- LV dysfunction (PAOP < LVEDP)

Sites

• IJV, subclavian, femoral also possible

Insertion

- Patient should be placed on continuous ECG and intra-arterial pressure monitoring
- Firstly, insert PAC sheath. Patient preparation and technique similar to CVC insertion (see chapter on central venous catheters).
- Insertion of PAC catheter
 - Check balloon is inflatable
 - Flush all lumens with saline
 - Connect PA port to transducer system and zero it at appropriate scale (0-40 mmHg) on the hameodynamic monitor
 - Pass PA catheter through the sheath with balloon deflated until beyond 15 cm mark, then inflate balloon 1-1.5 ml of air. Use the changing waveforms ($RA \rightarrow RV \rightarrow PA$) on the monitor until reach PA artery occlusion tracing.
 - Deflate balloon waveform should now show PA tracing. Adjust catheter depth until PAOP trace appears with balloon inflation (1-1.5 ml of air)
 - Take note of the marking on the catheter, locked it in place if feature available on your catheter and suture the sheath to skin. Cover with transparent dressing
 - CXR to confirm position of catheter tip and absence of penumothorax

Department of Anaesthesia and Intensive Care, the Chinese University of Hong Kong Last Update Nov 2015

Measurement of pressure

- Reference to mid-axillary line
- Measure at end-expiratory pressure for both ventilated (lowest point) and spontaneous breathing (highest point) patients
- Do not disconnect ventilated patients during measurements
- Cardiac output measurements thermodilution technique. We use 10 mls of 5% dextrose at room temperature each time. Inject as rapidly as possible. Do at least 3 readings and get the average.
- Data obtained by measurement include PAOP, CO, CVP, HR, PA and arterial pressures. Additional haemodynamic data is derived from calculation
- Record all data into a separate haemodynamic flowsheet

Maintenance

• As for CVCs except in general, PACs are removed much earlier than CVC. In this unit, it is unusual to keep a PAC in-situ for > 3days

Complications

- Related to cannulation (see chapter on CVCs)
- Related to insertion or use of a PAC
 - Tachyarrhythmias
 - RBBB
 - Cardiac perforation
 - Thromboembolism
 - Pulmonary infarction (2^0 to persistent wedging)
 - Pulmonary artery rupture
 - Catheter related sepsis
 - Endocarditis
 - o Pulmonary valve insufficiency
 - Catheter knotting
 - Balloon fragmentation/embolism

Haemodynamic parameters measured

Parameter	Normal range
Central venous pressure	0-7 mmHg
Right atrial pressure	0-7 mmHg

Department of Anaesthesia and Intensive Care, the Chinese University of Hong Kong Last Update Nov 2015

Pulmonary artery systolic pressure	15-25 mm Hg
Pulmonary artery diastolic pressure	8 – 15 mmHg
Pulmonary artery mean pressure	10-20 mmHg
Pulmonary artery occlusion pressure	6 – 15 mm Hg

Haemodynamic equations

Variable	Formula	Normal range
Cardiac index (CI)	CI = CO/BSA	2.5-3.6 L/min/m ²
Systemic vascular	$SVR = MAP - RAP \times 80$	750-1500
resistance (SVR)	CO	dyn.sec/cm ⁵
Systemic vascular	SVR/BSA	1400-2400
resistance index		dyn.sec/cm ⁵ /m ²
(SVRI)		
Pulmonary vascular	$PVR = mean PAP - PAOP \times 80$	50-150
resistance (PVR)	СО	dyn.sec/cm ⁵
Pulmonary vascular	PVR = mean PAP - PAOP x80	150-250
resistance index	/BSA	dyn.sec/cm ⁵ /m ²
(PVRI)	СО	
Stroke volume index	SVI =_CI	40–60
(SVI)	HR	ml/beat/m ²
Left ventricular	$LVSWI = (MAP-PAOP) \times SVI \times$	50-120 g/m ² /beat
stroke work index	0.0136	
Right ventricular	$RVSWI = (MAP-RAP) \times SVI \times$	25-25 g/m ² /beat
stroke work index	0.0136	
Arterial oxygen	$CaO_2 = (Hb \times 1.34 \times SaO_2) + (PaO_2)$	17-20 ml/100 ml
content	X 0.003)	
Mixed venous	$C_vO_2 = (Hb \ x \ 1.34 \ x \ S_vO_2) + (P_vO_2)$	12-15 ml/100 ml
oxygen content	X 0.003)	
Mixed venous		≈ 75%
oxygen saturation		
(S_vO2)		
Oxygen delivery	$DO_2 I = CI \times CaO_2 \times 10$	550-750
index		ml/min/m ²
Oxygen consumption	$VO_2 I = CI x (CaO_2 - CvO_2) x 10$	115-160
index		ml/min/m ²
Oxygen extraction	$O_2 ER = -VO_2 I$	0.24-0.4
ratio	DO ₂ I	

Department of Anaesthesia and Intensive Care, the Chinese University of Hong Kong Last Update Nov 2015

Shunt equation	$Qs = (CcO_2 - CaO_2) \times 100$	5-15%
	$(CcO_2 - CvO_2)$	
End capillary oxygen	$CcO2 = (Hb x 1.34 x 1.0) = (P_AO_2 x 1.0)$	80-100 ml/100
content	0.003)	ml
Alveolar gas	$P_AO_2 = FiO_2 (760 - 47) - (PaCO_2 x)$	100-650 mmHg
equation	1.25)	